Path Planning of UAV Based on Improved Adaptive Grey Wolf Optimization Algorithm
نویسندگان
چکیده
منابع مشابه
An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملReal-time Path Planning Strategy for UAV Based on Improved Particle Swarm Optimization
Unmanned Aerial Vehicle (UAV) path planning is divided into off-line static path planning and real-time dynamic path planning. The former one is applied to the ideal situation that the terrain has been clear, and there is no unexpected situation in flight. Actually, however, the flight situation is very complex, we have to adopt real-time path planning based on off-line static path planning. To...
متن کاملA Genetic-Algorithm-Based Approach to UAV Path Planning Problem
This paper presents a genetic-algorithm-based approach to the problem of UAV path planning in dynamic environments. Variable-length chromosomes and their genes have been used for encoding the problem. We model the vehicle path as a sequence of speed and heading transitions occurring at discrete times, and this model specifically contains the vehicle dynamic constraints in the generation of tria...
متن کاملRobot Path Planning Method Based on Improved Genetic Algorithm
This paper presents an improved genetic algorithm for mobile robot path planning. The algorithm uses artificial potential method to establish the initial population, and increases value weights in the fitness function, which increases the controllability of robot path length and path smoothness. In the new algorithm, a flip mutation operator is added, which ensures the individual population col...
متن کاملMobile Robot Path Planning Based on Improved Q Learning Algorithm
For path planning of mobile robot, the traditional Q learning algorithm easy to fall into local optimum, slow convergence etc. issues, this paper proposes a new greedy strategy, multi-target searching of Q learning algorithm. Don't need to create the environment model, the mobile robot from a single-target searching transform into multitarget searching an unknown environment, firstly, by the dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3090776